If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+4u-14=0
a = 1; b = 4; c = -14;
Δ = b2-4ac
Δ = 42-4·1·(-14)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{2}}{2*1}=\frac{-4-6\sqrt{2}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{2}}{2*1}=\frac{-4+6\sqrt{2}}{2} $
| 2q-4=9 | | 1.2x+1.4=3.4x$ | | x-4+18=12 | | (11)/(p+8)=5/2 | | x-4-18=-12 | | 23+18u=-21=14u | | 5-16=8x-3 | | 4x=2+14= | | 3p-(5p-4)=-4 | | 5x-10-3x=6x-5 | | 5x+19=7x-9 | | 3p-(5p-4)=4 | | -3(5+d)=3^3 | | 4x+5x-14=28-5x | | 8(n+3)=5(n–5)–7(n+4)–7 | | 4a=-3a+14 | | 2x-24+86=180 | | (5x-2)^2+2=83 | | 3(×+1)-5x=12-(6×-7) | | 10h-7=-21-26 | | 8-2y=3y | | s+31/4s+10=46 | | -20=2(x+2)-5x | | 11/33=5/x | | -23=x+35= | | -2/5x+15=-5 | | 6−9x=7x−10x−12 | | (x-3)-7=-2 | | -4K+2(6-5k)=3k-39 | | 2^(4x+3)=512 | | 22+54x=20+60x | | -7(-6n-6)=252 |